Resistors

Consider a uniform cylinder of material with mediocre to poor to pathetic conductivity $\sigma(\bar{r})=\sigma$.

This cylinder is centered on the z-axis, and has length ℓ. The surface area of the ends of the cylinder is S.

Say the cylinder has current I flowing into it (and thus out of $i t)$, producing a current density $J(\bar{r})$.

By the way, this cylinder is commonly referred to as a resistor!
Q: What is its resistance R of this resistor, given length ℓ, cross-section area S, and conductivity σ ?

A: Let's first begin with the circuit form of Ohm's Law:

$$
R=\frac{V}{I}
$$

where V is the potential difference between the two ends of the resistor (i.e., the voltage across the resistor), and I is the current through the resistor.

From electromagnetics, we know that the potential difference V is:

$$
V=V_{a b}=\int_{a}^{b} E(\bar{r}) \cdot \overline{d \ell}
$$

and the current I is:

$$
I=\iint_{S} J(\bar{r}) \cdot \overline{d s}
$$

Thus, we can combine these expressions and find resistance R, expressed in terms of electric field $E(\bar{r})$ within the resistor, and the current density $J(\bar{r})$ within the resistor:

$$
R=\frac{V}{I}=\frac{\int_{a}^{b} E(\bar{r}) \cdot \overline{d \ell}}{\iint_{S} J(\bar{r}) \cdot \overline{d s}}
$$

Lets evaluate each integral in this expression to determine the resistance R of the device described earlier!

1) The voltage V is the potential difference $V_{a b}$ between point a and point b :

$$
V=V_{a b}=\int_{a}^{b} E(\bar{r}) \cdot \overline{d l}
$$

Q: But, what is the electric field $\mathrm{E}(\overline{\mathrm{r}})$?

A: The electric field within the resistor can be determined from Ohm's Law:

$$
E(\bar{r})=\frac{J(\bar{r})}{\sigma(\bar{r})}
$$

We can assume that the current density is approximately constant across the cross section of the cylinder:

$$
J(\bar{r})=J \hat{a}_{z}
$$

Likewise, we know that the conductivity of the resistor material is a constant:

$$
\sigma(\bar{r})=\sigma
$$

As a result, the electric field within the resistor is:

$$
E(\bar{r})=\frac{J(\bar{r})}{\sigma(\bar{r})}=\frac{J}{\sigma} \hat{a}_{z}
$$

Therefore, integrating in a straight line along the z-axis from point a to point b, we find the potential difference V to be:

$$
\begin{aligned}
V & =\int_{a}^{b} \mathrm{E}(\bar{r}) \cdot \overline{d \ell} \\
& =\frac{1}{\sigma} \int_{z_{a}}^{z_{b}} J \hat{a}_{z} \cdot \hat{a}_{z} d z \\
& =\frac{J}{\sigma} \int_{z_{a}}^{z_{b}} d z \\
& =\frac{J \ell}{\sigma}
\end{aligned}
$$

2) We likewise know that the current I through the resistor is found by evaluating the surface integral:

$$
\begin{aligned}
I & =\iint_{S} J(\bar{r}) \cdot \overline{d s} \\
& =\iint_{S} J \hat{a}_{z} \cdot \hat{a}_{z} d s_{z} \\
& =J \iint_{S} d s_{z} \\
& =J S
\end{aligned}
$$

Therefore, the resistance R of this particular resistor is:

$$
\begin{aligned}
R & =\frac{V}{I} \\
& =\left(\frac{J \ell}{\sigma}\right)\left(\frac{1}{J S}\right) \\
& =\frac{\ell}{\sigma S}
\end{aligned}
$$

An interesting result! Consider a resistor as sort of a "clogged pipe". Increasing the cross-sectional area S makes the pipe bigger, allowing for more current flow. In other words, the resistance of the pipe decreases, as predicted by the above equation.

Likewise, increasing the length ℓ simply increases the length of the "clog". The current encounters resistance for a longer distance, thus the value of R increases with increasing length ℓ. Again, this behavior is predicted by the equation shown above.

For example, consider the case where we add two resistors together:

We can view this case as a single resistor with a length $\ell_{1}+\ell_{2}$, resulting in a total resistance of:

$$
\begin{aligned}
R_{\text {total }} & =\frac{\ell_{1}+\ell_{2}}{\sigma S} \\
& =\frac{\ell_{1}}{\sigma S}+\frac{\ell_{2}}{\sigma S} \\
& =R_{1}+R_{2}
\end{aligned}
$$

But, this result is not the least bit surprising, as the two resistors are connected in series!

Now let's consider the case where two resistors are connected in a different manner:

We can view this as a single resistor with a total cross sectional area of $S_{1}+S_{2}$. Thus, its total resistance is:

$$
\begin{aligned}
R_{\text {total }} & =\frac{\ell}{\sigma\left(S_{1}+S_{2}\right)} \\
& =\left[\frac{\sigma\left(S_{1}+S_{2}\right)}{\ell}\right]^{-1} \\
& =\left[\frac{\sigma S_{1}}{\ell}+\frac{\sigma S_{2}}{\ell}\right]^{-1} \\
& =\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]^{-1}
\end{aligned}
$$

Again, this should be no surprise, as these two resistors are connected in parallel.

IMPORTANT NOTE: The result $R=\ell / \sigma S$ is valid only for the resistor described in this handout. Most importantly, it is valid only for a resistor whose conductivity is a constant $(\sigma(\bar{r})=\sigma)$.

If the conductivity is not a constant, then we must evaluate the potential difference across the resistor with the more general expression:

$$
\begin{aligned}
V_{a b} & =\int_{a}^{b} E(\bar{r}) \cdot \overline{d \ell} \\
& =\int_{a}^{b} \frac{J(\bar{r})}{\sigma(\bar{r})} \cdot \overline{d \ell}
\end{aligned}
$$

